Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-16, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711404

RESUMEN

Flour-based fried foods are among the most commonly consumed foods worldwide. However, the sensory attributes and nutritional value of fried foods are inconsistent and unstable. Therefore, the creation of fried foods with desirable sensory attributes and good nutritional value remains a major challenge for the development of the fried food industry. The quality of flour-based fried foods can sometimes be improved by physical methods and the addition of chemical modifiers. However, enzyme modification is widely accepted by consumers due to its unique advantages of specificity, mild processing conditions and high safety. Therefore, it is important to elucidate the effects of enzyme treatments on the sensory attributes (color, flavor and texture), oil absorption and digestibility of flour-based fried foods. This paper reviews recent research progress in utilizing enzyme modification to improve the quality of flour-based fried foods. This paper begins with the effects of common enzymes on the physicochemical properties (rheological property, retrogradation property and specific volume) of dough. Based on the analysis of the mechanism of formation of sensory attributes and nutritional properties, it focuses on the application of amylase, protease, transglutaminase, and lipase in the regulation of sensory attributes and nutritional properties of flour-based fried foods.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494796

RESUMEN

Anthocyanins have become increasingly important to the food industry due to their colorant features and many health-promoting activities. Numerous studies have linked anthocyanins to antioxidant, anti-inflammatory, anticarcinogenic properties, as well as protection against heart disease, certain types of cancer, and a reduced risk of diabetes and cognitive disorders. Anthocyanins from various foods may exhibit distinct biological and health-promoting activities owing to their structural diversity. In this review, we have collected and tabulated the key information from various recent published studies focusing on investigating the chemical structure effect of anthocyanins on their stability, antioxidant activities, in vivo fate, and changes in the gut microbiome. This information should be valuable in comprehending the connection between the molecular structure and biological function of anthocyanins, with the potential to enhance their application as both colorants and functional compounds in the food industry.

3.
ACS Appl Mater Interfaces ; 16(13): 16253-16260, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38514257

RESUMEN

The CuGaTe2 thermoelectric material has garnered widespread attention as an inexpensive and nontoxic material for mid-temperature thermoelectric applications. However, its development has been hindered by its low intrinsic carrier concentration and high thermal conductivity. This study investigates the band structure and thermoelectric properties of (CuGaTe2)1-x (ZnSe)x (x = 0, 0.25%, 0.5%, 1%, 1.5%, and 2%). The research revealed that the incorporation of Zn and Se atoms enhanced the level of band degeneracy and electron density of states near Fermi level, significantly raising carrier concentration through the formation of ZnGa- point defects. Simultaneously, when the doping content reached 1.5%, the ZnTe second phase emerged, collaborating with point defects and high-density dislocations, effectively scattering phonons and substantially reducing lattice thermal conductivity. Therefore, introducing ZnSe can simultaneously optimize the material's electrical and thermal transport properties. The (CuGaTe2)0.985(ZnSe)0.015 sample reaches peak ZT of 1.32 at 823 K, representing a 159% increase compared to pure CuGaTe2.

4.
Int J Biol Macromol ; 264(Pt 2): 130559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431016

RESUMEN

The effects of structural changes on surface oil absorption characteristics of wheat starch, pea starch and potato starch during frying under different water content (20%, 30%, 40%, 50%) were studied. Fried potato starch with a 40% water content exhibited the highest surface oil content. When the initial moisture content reached 30%, the scattering intensity of the crystal layer structure decreased for wheat and pea starches, while the scattering peak for potato starch completely disappeared. At 40% moisture content, the amorphous phase ratio values for fried potato, wheat and pea starches were 13.50%, 11.78% and 11.24%, respectively, and the nitrogen adsorption capacity of fried starch decreased in turn. These findings that the structure of potato starch was more susceptible to degradation compared to pea starch and wheat starch, resulting in higher surface oil absorbed by potato starch during frying process.


Asunto(s)
Pisum sativum , Solanum tuberosum , Solanum tuberosum/química , Triticum/metabolismo , Almidón/química , Agua/química
5.
ACS Nano ; 18(2): 1678-1689, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164927

RESUMEN

Incorporating donor doping into Mg3Sb1.5Bi0.5 to achieve n-type conductivity is one of the crucial strategies for performance enhancement. In pursuit of higher thermoelectric performance, we herein report co-doping with Te and Y to optimize the thermoelectric properties of Mg3Sb1.5Bi0.5, achieving a peak ZT exceeding 1.7 at 703 K in Y0.01Mg3.19Sb1.5Bi0.47Te0.03. Guided by first-principles calculations for compositional design, we find that Te-doping shifts the Fermi level into the conduction band, resulting in n-type semiconductor behavior, while Y-doping further shifts the Fermi level into the conduction band and reduces the bandgap, leading to enhanced thermoelectric performance with a power factor as high as >20 µW cm-1 K-2. Additionally, through detailed micro/nanostructure characterizations, we discover that Te and Y co-doping induces dense crystal and lattice defects, including local lattice distortions and strains caused by point defects, and densely distributed grain boundaries between nanocrystalline domains. These defects efficiently scatter phonons of various wavelengths, resulting in a low thermal conductivity of 0.83 W m-1 K-1 and ultimately achieving a high ZT. Furthermore, the dense lattice defects induced by co-doping can further strengthen the mechanical performance, which is crucial for its service in devices. This work provides guidance for the composition and structure design of thermoelectric materials.

6.
ACS Appl Mater Interfaces ; 15(46): 53594-53603, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948678

RESUMEN

Mg3Sb2-based thermoelectric materials can convert heat and electricity into each other, making them a promising class of environmentally friendly materials. Further improving the electrical performance while effectively reducing the thermal conductivity is a crucial issue. In this paper, under the guidance of the oneness principle calculation, we designed a thermoelectric Zintl phase based on Mg3.2Sb1.5Bi0.5 doped with Tb and Er. Calculation results show that using Tb and Er as cationic site dopants effectively improves the electrical properties and reduces the lattice thermal conductivity. Experimental results confirmed the effectiveness of codoping and effectively enhanced thermoelectric performance. The most immense ZT value obtained by the Mg3.185Tb0.01Er0.005Sb1.5Bi0.5 sample was 1.71. In addition, the average Young's modulus of the Mg3.185Tb0.01Er0.005Sb1.5Bi0.5 sample is 51.85 GPa, and the Vickers hardness is 0.99 GPa. Under the same test environment, the material was subjected to 12 cycles in the temperature range of 323-723 K, and the average power factor error range was 1.8% to 2.1%, which is of practical significance for its application in actual device scenarios.

7.
Heliyon ; 9(6): e16923, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484344

RESUMEN

Thermoresponsive polymers that undergo sol-gel transitions in the physiological temperature range have been widely used in biomedical applications. However, some commercially and clinically available thermoresponsive materials, particularly poloxamer 407 (P407), have the significant drawback of insufficient gel strength, which limit their performance. Furthermore, co-delivery with some small molecules, including chemical permeation enhancers (CPEs) can further impair the physical properties of P407. Here, we have developed a thermoresponsive platform by combination of CPEs with the poloxamer P188 to enable gelation at physiological temperatures and enhance gel strength. P188 gels at 60 °C, which is far above the physiological range. In combination with limonene (LIM) and sodium dodecyl sulfate (SDS), P188 gels at ∼25 °C, a temperature that in useful for biomedical applications. Gelation behavior was studied by small angle neutron scattering (SANS) experiments, which identified micelle-to-cubic mesophase transitions with increasing temperature. Analysis of the SANS intensities revealed that P188 micelles became larger as LIM or SDS molecules were incorporated, making it easier to form a micellar gel structure. P188-3CPE (i.e., 2% LIM, 1% SDS and 0.5% bupivacaine (BUP)) had low viscosity at room temperature, facilitating administration, but rapidly gelled at body temperature. P188-3CPE enabled the flux of the antibiotic ciprofloxacin across the TM and completely eradicated otitis media from nontypable Haemophilus influenzae (NTHi) in chinchillas after a single administration.

8.
ACS Appl Mater Interfaces ; 15(29): 35178-35185, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432880

RESUMEN

Optimizing the performance of thermoelectric materials by reducing its thermal conductivity is crucial to enhance its thermoelectric efficiency. Novel thermoelectric materials like the CuGaTe2 compound are hindered by high intrinsic thermal conductivity, which negatively impacts its thermoelectric performance. In this paper, we report that the introduction of AgCl by the solid-phase melting method will influence the thermal conductivity of CuGaTe2. The generated multiple scattering mechanisms are expected to reduce the lattice thermal conductivity while maintaining sufficient good electrical properties. The experimental results were supported by first-principles calculations confirming that the doping of the Ag will decrease the elastic constants, bulk modulus, and shear modulus of CuGaTe2, which makes the mean sound velocity and Debye temperature of Ag-doped samples lower than those of CuGaTe2, indicating the lower lattice thermal conductivity. In addition, the Cl elements within the CuGaTe2 matrix escaping during the sintering process will create holes of various sizes within the sample. These combined effects of holes and impurities will induce phonon scattering, which further reduces the lattice thermal conductivity. Based on our findings, we conclude that the introduction of AgCl into CuGaTe2 has shown a lower thermal conductivity without compromising the electrical performance, resulting in an ultra-high ZT value of 1.4 in the (CuGaTe2)0.96(AgCl)0.04 sample at 823 K.

9.
Nat Commun ; 14(1): 2444, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117194

RESUMEN

Delivery of hydrophilic small molecule therapeutics by traditional drug delivery systems is challenging. Herein, we have used the specific interaction between DNA aptamers and drugs to create simple and effective drug depot systems. The specific binding of a phosphorothioate-modified aptamer to drugs formed non-covalent aptamer/drug complexes, which created a sustained release system. We demonstrated the effectiveness of this system with small hydrophilic molecules, the site 1 sodium channel blockers tetrodotoxin and saxitoxin. The aptamer-based delivery system greatly prolonged the duration of local anesthesia and reduced systemic toxicity. The beneficial effects of the aptamers were restricted to the compounds they were specific to. These studies establish aptamers as a class of highly specific, modifiable drug delivery systems, and demonstrate potential usefulness in the management of postoperative pain.


Asunto(s)
Aptámeros de Nucleótidos , Sistemas de Liberación de Medicamentos , Preparaciones de Acción Retardada , Aptámeros de Nucleótidos/química , Tetrodotoxina/farmacología , Bloqueadores de los Canales de Sodio
10.
Mol Pharm ; 20(2): 1375-1381, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36633440

RESUMEN

Drug delivery directly across the tympanic membrane (TM) could eliminate systemic exposure to antibiotics prescribed for otitis media, the most common reason for pediatricians to prescribe antibiotics. Here, we hypothesized that inducing inflammation of the TM could enhance drug flux across the TM. We demonstrated that the flux of ciprofloxacin across the TM was greatly increased by treatment with the proinflammatory agent histamine. That enhancement was blocked by concurrent treatment with blockers of histamine receptor 1. Treatment of the TM with histamine was able to enhance drug flux sufficiently to eradicate otitis media in vivo in chinchillas, but only if the histamine was applied prior to treatment with antibiotics.


Asunto(s)
Otitis Media , Membrana Timpánica , Humanos , Histamina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Otitis Media/tratamiento farmacológico , Inflamación/tratamiento farmacológico
11.
Giant (Oxf) ; 62021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34806058

RESUMEN

Localized and non-invasive delivery of therapeutics across barriers in the body is challenging. Examples include the flux of drugs across the tympanic membrane (TM) for the treatment of middle ear infections, and across the round window to treat inner ear disease. With the emergence of macromolecular therapies, the question arises as to whether such delivery can be achieved with macromolecules. Here, we have used polyethylene glycols (PEGs) in solutions to investigate macromolecular permeation across the TM in the chinchilla ex vivo. As the molecular weight of PEG increased, flux across the TM decreased, with an exponential relationship between the apparent diffusion coefficient and the molecular weight of the polymers. PEG flux was further decreased if it was released from a poloxamer 407 hydrogel, and lessened with increasing hydrogel concentration. Our results provide a framework for understanding the permeation of macromolecules noninvasively across barriers.

12.
Adv Funct Mater ; 31(44)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34795553

RESUMEN

The prevalence of ear disorders has spurred efforts to develop drug delivery systems to treat these conditions. Here, recent advances in drug delivery systems that access the ear through the tympanic membrane (TM) are reviewed. Such methods are either non-invasive (placed on the surface of the TM), or invasive (placed in the middle ear, ideally on the round window [RW]). The major hurdles to otic drug delivery are identified and highlighted the representative examples of drug delivery systems used for drug delivery across the TM to the middle and (crossing the RW also) inner ear.

13.
Front Neurol ; 12: 580392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708167

RESUMEN

Background and Introduction: Acute otitis media is the most common reason for a visit to the pediatrician, often requiring systemic administration of oral antibiotics. Local drug therapy applied to the middle ear could avoid side effects associated with systemic antibiotic administration, however in the majority of patients this would require drugs to diffuse across an intact tympanic membrane. Experimental methods for testing trans-tympanic drug flux in human tissues in situ would be highly valuable to guide drug therapy development for local drug delivery to the middle ear. Materials and Methods: A total of 30 cadaveric human temporal bones were characterized by trans-tympanic impedance testing to determine how steps in tissue processing and storage might impact intactness of the tympanic membrane and thus suitability for use in studies of trans-tympanic drug flux. Ciprofloxacin drug solutions of varying concentrations were then applied to the lateral surface of the tympanic membrane in eight samples, and middle ear aspirate was collected over the following 48 h to evaluate trans-tympanic flux to the middle ear. Results: Tissue processing steps that involved extensive tissue manipulation were consistently associated with evidence of microperforations in the tympanic membrane tissue. Maintaining the tympanic membrane in situ within the temporal bone, while using an otologic drill to obtain transmastoid access to the middle ear, was demonstrated as a reliable, non-damaging technique for accessing both lateral and medial surfaces for trans-tympanic flux testing. Results in these bones demonstrated trans-tympanic flux of ciprofloxacin when administered at sufficiently high concentration. Discussion and Conclusion: The study describes key techniques and best practices, as well as pitfalls to avoid, in the development of a model for studying trans-tympanic drug flux in human temporal bones in situ. This model can be a valuable research tool in advancing progress toward eventual clinical studies for trans-tympanic drug delivery to the middle ear.

14.
Chin J Nat Med ; 18(10): 729-737, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33039052

RESUMEN

A series of novel pyrano[2, 3-d]trizaole compounds were synthesized and their α-glucosidase inhibitory activities were evaluated by in vitro enzyme assay. The experimental data demonstrated that compound 10f showed up to 10-fold higher inhibition (IC5074.0 ± 1.3 µmol·L-1) than acarbose. The molecular docking revealed that compound 10f could bind to α-glucosidase via the hydrophobic, π-π stacking, and hydrogen bonding interactions. The results may benefit further structural modifications to find new and potent α-glucosidase inhibitors.


Asunto(s)
Carbohidratos/química , Inhibidores de Glicósido Hidrolasas/química , Triazoles/química , Simulación del Acoplamiento Molecular , Estructura Molecular
15.
Food Funct ; 11(7): 6028-6037, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32697245

RESUMEN

For most people, the pesticide residues found on agriculture products are the main source of pesticide exposure, which may adversely influence consumer health. The potential health hazard of residual pesticides depends on the nature of the foods they are consumed with. Studies with fat-soluble vitamins and nutraceuticals have shown that their bioaccessibility depends on food matrix composition and structure. We used an in vitro method to investigate the influence of the dimensions of the lipid phase in model fatty foods (emulsified or bulk oil) on the bioaccessibility of various pesticides. Three pesticides that differed in their oil-water partition coefficients were selected: bendiocarb (log P = 1.7), parathion (log P = 3.8), and chlorpyrifos (log P = 5.3). These pesticides were mixed with tomato puree to represent pesticide-treated agricultural products. Three model foods with different oil phase dimensions were used to represent different kinds of food product: small emulsions (d32 = 0.14 µm); large emulsions (d32 = 10 µm); and, bulk oil. Our results showed that the oil droplets underwent extensive changes as they passed through the simulated gastrointestinal tract due to changes in environmental conditions, such as pH, ionic strength, bile salts, and enzyme activities. The initial rate and final amount of lipid hydrolysis decreased with increasing lipid phase dimensions. Pesticide bioaccessibility depended on both the hydrophobicity of the pesticide and the dimensions of the co-ingested lipid droplets. The least hydrophobic pesticide (bendiocarb) had a high bioaccessibility (>95%) that did not depend on lipid phase dimensions. The more hydrophobic pesticides (parathion and chlorpyrifos) has a lower bioaccessibility that increased with decreasing lipid phase dimensions. Our results demonstrate the critical role that food structure plays on the potential uptake of pesticides from agricultural products, like fruits and vegetables.


Asunto(s)
Cloropirifos/análisis , Cloropirifos/farmacocinética , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/farmacocinética , Plaguicidas/análisis , Plaguicidas/farmacocinética , Disponibilidad Biológica , Cloropirifos/toxicidad , Productos Agrícolas/química , Suplementos Dietéticos , Digestión , Emulsiones/química , Frutas , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Concentración de Iones de Hidrógeno , Solanum lycopersicum/química , Tamaño de la Partícula , Residuos de Plaguicidas/toxicidad , Plaguicidas/toxicidad , Verduras
16.
Colloids Surf B Biointerfaces ; 194: 111202, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32585537

RESUMEN

Both whole and processed foods contain numerous bioactive substances that improve human health and performance, including macronutrients, micronutrients, and nutraceuticals. Many of these substances are strongly hydrophobic and chemically labile, which can diminish their beneficial health effects, since only a small fraction of the ingested amount is actually absorbed and utilized by the body. In the gastrointestinal tract, the overall bioavailability of a hydrophobic substance is determined by its bioaccessibility, transformation, and absorption. The design of functional foods with enhanced biological activity depends on identifying the relative importance of these three different processes for specific bioactive substances, and then using this knowledge to optimize the nature of food matrices to boost bioavailability. In this review, we focus on the utilization of oil-in-water nanoemulsions for this purpose because their compositions, structures, and properties can be easily manipulated. Nanoemulsions can be used as delivery systems where the hydrophobic bioactive substances are loaded into the oil phase either before or after homogenization. Alternatively, they can be utilized as excipient systems. In this case, the bioactive substances are located within an existing food product (such as a fruit or vegetable), which is then consumed with a specially-designed excipient nanoemulsion (such as a sauce, dressing, or cream). Research has shown that for both delivery and excipient systems, the oral bioavailability of hydrophobic bioactives can be enhanced considerably in the presence of a nanoemulsion, provided its properties have been carefully designed. This review article outlines the principles of the design of nanoemulsion-based delivery and excipient systems for boosting the bioavailability of hydrophobic bioactive substances.


Asunto(s)
Suplementos Dietéticos , Excipientes , Disponibilidad Biológica , Emulsiones , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
17.
Molecules ; 25(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213953

RESUMEN

There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There is, however, potential for them to also raise the bioavailability of undesirable substances found in these products, such as pesticides. In this research, we studied the impact of excipient nanoemulsions on the bioaccessibility of pesticide-treated tomatoes. We hypothesized that the propensity for nanoemulsions to raise pesticide bioaccessibility would depend on the polarity of the pesticide molecules. Bendiocarb, parathion, and chlorpyrifos were therefore selected because they have Log P values of 1.7, 3.8, and 5.3, respectively. Nanoemulsions with different oil contents (0%, 4%, and 8%) were fabricated to study their impact on pesticide uptake. In the absence of oil, the bioaccessibility increased with increasing pesticide polarity (decreasing Log P): bendiocarb (92.9%) > parathion (16.4%) > chlorpyrifos (2.8%). Bendiocarb bioaccessibility did not depend on the oil content of the nanoemulsions, which was attributed to its relatively high water-solubility. Conversely, the bioaccessibility of the more hydrophobic pesticides (parathion and chlorpyrifos) increased with increasing oil content. For instance, for chlorpyrifos, the bioaccessibility was 2.8%, 47.0%, and 70.7% at 0%, 4%, and 8% oil content, respectively. Our findings have repercussions for the utilization of nanoemulsions as excipient foods in products that may have high levels of undesirable non-polar substances, such as pesticides.


Asunto(s)
Productos Biológicos/química , Emulsiones/química , Plaguicidas/química , Cloropirifos/química , Interacciones Hidrofóbicas e Hidrofílicas , Paratión/química , Fenilcarbamatos/química
18.
Food Res Int ; 129: 108875, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036913

RESUMEN

The colloidal delivery systems fabricated by emulsion containing natural proteins and lipids have been utilized to protect carotenoids as well as to release the carotenoids in the simulated in vitro gastrointestinal tract (GIT). In this study, ß-carotene (BC) was embedded into emulsions that were stabilized by scallop gonad protein isolates (SGPIs), and the emulsion droplets containing BC were then entrapped into calcium-alginate beads. The results showed that the oil-in-water emulsions coated by SGPIs only showed good stability at pH 7-8, while the emulsion-alginate beads remained relatively intact at pH 3-8. BC encapsulated in emulsions was extremely unstable and prone to degradation when stored at the comparatively higher temperature (37 °C), whereas the stability of BC was greatly enhanced through incorporation into emulsion-alginate beads. The digestion rate and extent of lipid droplets constructed within SGPIs-stabilized emulsion-alginate beads were slower than that in emulsions during GIT. The confocal laser scanning microscopy revealed that the lipid droplets in emulsions were aggregated after exposure to the mouth and gastric phases, while the emulsion-alginate beads maintained their spherical shape after exposure to the oral and gastric phases. Moreover, the free lipid droplets in the emulsions showed a higher bioaccessibility of BC (66%) than that in the emulsion-alginate beads (38%), whereas the BC transformation was on the contrary. The findings in this study indicated that SGPIs-stabilized emulsion in alginate beads can potentially be utilized for the encapsulation and controlled release of lipophilic bioactive compounds.


Asunto(s)
Alginatos/química , Gónadas/química , Pectinidae/química , Proteínas/química , beta Caroteno/química , Animales , Emulsionantes/química , Emulsiones/química
19.
Food Res Int ; 128: 108781, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31955754

RESUMEN

Complex coacervation is a useful approach for creating biopolymer-based colloidal particles for the oral delivery of bioactives, such as nutraceuticals, vitamins, and pharmaceuticals. In this study, we examined the possibility of using anionic É£-poly-glutamic acid (PGA) and cationic ɛ-poly-l-lysine (PLL) to form polyelectrolyte complexes. Initially, the formation and properties of the complexes were characterized using visual observations, UV-visible spectrophotometry, microelectrophoresis (ζ-potential), and isothermal titration calorimetry (ITC). The impact of pH, ionic strength, temperature, and polymer ratio on complex formation was examined. The electrostatic complexes formed had a 1:4 mass ratio of polyanion-to-polycation at saturation (pH 7.4). The surface potential and aggregation stability of the complexes was highly dependent on solution pH (2-12), which was attributed to alterations in the electrical characteristics of the two polyelectrolytes. In particular, insoluble complexes were formed under pH conditions where there was a strong electrostatic attraction between the two polyelectrolytes, whereas soluble complexes were formed when there was only a weak attraction. The addition of salt (≥20 mM NaCl) promoted aggregation of the complexes, presumably due to screening of the electrostatic interactions between them. Conversely, temperature (25-90 °C) did not have a major impact on the stability of the complexes. These results may be useful for the design of effective oral delivery systems for bioactive agents in foods and other products.


Asunto(s)
Ácido Poliglutámico/análogos & derivados , Polilisina/química , Biopolímeros/química , Composición de Medicamentos , Tamaño de la Partícula , Ácido Poliglutámico/química , Soluciones , Electricidad Estática , Temperatura , Agua
20.
Food Chem ; 309: 125681, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31670120

RESUMEN

The oil-absorption behavior of native maize starch (NMS) during frying was investigated in the presence or absence of pullulan (PUL) using a LF-NMR method. The morphology, long-range order, short-range order, and thermal properties of fried NMS-PUL mixtures were further evaluated using SEM, XRD, ATR-FTIR, and DSC, respectively. Pullulan addition significantly reduced the oil content of the fried starch samples: 0.395, 0.310, 0.274, and 0.257 g/g in NMS with addition of 0, 1, 3, and 5% PUL, respectively (p < 0.05). SEM analysis showed that the intact granular morphology of the starch granules was preserved upon addition of pullulan. The XRD, FTIR, and DSC results showed that pullulan protected both the short-range double helices and long-range crystalline structure of the granules during frying. As a result, fried NMS-PUL mixtures were denser than fried NMS, thus inhibiting oil absorption during frying. These results may have important implications for creating healthier reduced-fat fried food products.


Asunto(s)
Manipulación de Alimentos , Glucanos , Aceites/química , Almidón/química , Zea mays/química , Calor , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...